模块化斜床身结构静动态性能研究

■ 通用技术集团大连机床有限责任公司 (辽宁大连 116620) 吴慧敏

摘要:针对新型模块化数控车床产品,利用ANSYS软件对其整体铸造斜床身结构进行了静态和动态分析,并经过试验验证, 为机床进一步的结构优化升级与批量生产提供了理论试验依据。

关键词:模块化:整体式:斜床身:车床

随着工业4.0兴起,制造业 不断向智能制造方向转变。模块 化机床是现代生产的一种新型模 式。模块化系统定义为一种尽可 能的通用的可替换的基本部件组 合成不同形式机床品种的生产技 术和组织计划方式。针对这一理 念,以厂内新型模块化数控车床 为例,通过静动态分析模块,分 析了40°整体式床身静动态性 能,为实现精益生产提供了有价 值的参考。该机床的Pro/E模型 如图1所示。床身采用整体铸造 成形,床身导轨40°倾斜布局, 有较大的承载截面, 其他模块按 照市场需求进行不同配置, 可实 现高精密、高效率和高可靠性加 工。

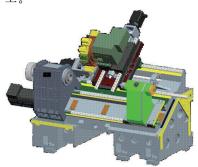


图1 模块化机床架构

1. 整体式斜床身有限元模 型建立

床身作为机床承载载荷的基础,其性能非常重要。需要对其进行静力学分析,找出应力和变形最大的薄弱点,为衡量机床性能提供可靠的依据。

由于过渡圆角、螺栓孔及模型中的小孔对床身的质量及刚度 不会产生大的影响,完全可以保证足够的计算精度,因此可以去 掉这些特征。

将Pro/E软件建立的床身模型导入ANSYS中。设置床身材料为HT300,密度为7300kg/cm³,杨氏模量为1.43×10¹¹Pa,泊松比为0.26。采用四面体和扫掠网格划分,床身节点数为341789个,单元个数为187625。整体式斜床身有限元模型如图2所示。

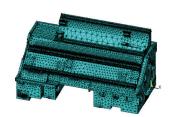


图2 整体式斜床身有限元模型

2. 斜床身静力学分析

数控车床斜床身底部与地基固定,可以定义为全约束,主要承载载荷见表1。上导轨面承载刀塔刀盘和滑板的共同质量,下导轨面承载主轴箱和尾座的共同质量。在工况下,上下导轨均承受切削力的作用。

表1 斜床身载荷参数 (质量: kg)

载荷	主轴箱	刀塔刀盘	滑板	尾座	床鞍
数值	382.8	90	64.5	145.6	158

针对此床身40°倾斜设计, 从床身静态有限元分析可知,最 大应力区域分布在床身背部一些 筋板连接处,上下导轨应力很 小,对实际加工几乎没有影响, 床身最大应力为28 540N,如图3 所示。

最大变形位置出现在上导轨中间稍微靠左的位置,这与工况下导轨受到最大的力相吻合,此处正是加工工件时刀塔的位置。由于导轨倾斜40°,上导轨外侧部分承载力较大,但是其变形量最大只有0.108×10⁻³mm,如图4所示,说明床身结构变形非常

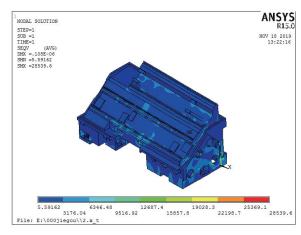


图3 斜床身最大应力云图

小,可以满足加工精度,确保加 工质量。

3. 斜床身模态性能分析

同样,按照图2结构进行网 格划分有限元模型,运用Block Lanczos方法计算模态分析结果见 表2。提取床身的前六阶振型如图 5所示。

数据分析可得,床身振动的 位移量范围约为0.052~0.079mm, 对于加工影响不是很大,并且 模态振动的固有频率最小为 303.38Hz。根据计算得到一阶临 界转速约为13 652r/min, 而该机 床最高转速为4 000r/min, 远低于 临界转速,不会发生共振。说明 该床身完全符合初期构想的技术 要求。

4. 动态性能试验验证

对于首台试制整体式床身数 控车床,需要对其进行动态性能 试验, 检验其各项性能是否符合 技术要求。同时为了验证计算的 准确性,对该斜床身数控车床进 行切削试验验证。按照国家标准 GB/T 9061—2007和行业标准JB/T 2322.1-2002要求, 根据机床相 关参数选择刀具和试件见表3。试 件装夹如图6所示。

经过多次切削试验,得到切 削参数见表4。该机床最大切削 深度可达7mm。并且试验中无 切削颤振现象,工件表面无明显 振纹,说明该机床的动态性能良 好,验证了床身有限元分析的准 确性。

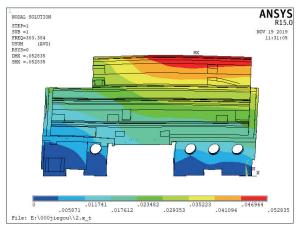
5. 结语

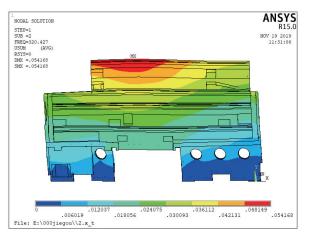
本文运用ANSYS软件对新 型整体式床身结构进行了静动态 分析计算,证明床身最大应力区 域分布在床身背部一些筋板连接 处,上下导轨应力很小。最大变

图4 斜床身最大变形云图

形位置出现在上导轨中间稍微靠 左的位置,应力和变形数值都很 小, 验证了其强度和刚度的合理 性。同时,得到了在切削中床身 容易发生共振的频率范围, 验证 了整体式床身结构的合理性。通 过实际加工试验验证, 进一步证 明了该床身结构的可靠和稳定。 为该新型整体式斜床身的批量生 产提供了理论和试验基础。

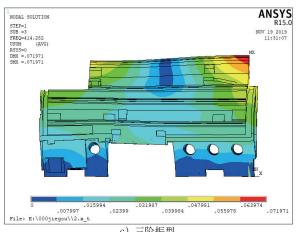
表3 试验参数

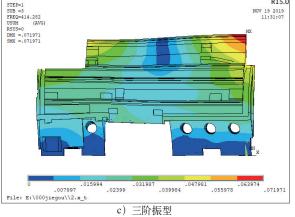

	项目	短试件	
	材料	45 (硬度 190HB±10HB)	
试料	D/mm	100	
	L/mm	90	
	L_1 /mm	≥15	
	材料	YT15	
	前角γ (°)	6	
	后角α (°)	6	
刀具	副后角α′ (°)	2	
	副偏角φ′ (°)	2	
	刀高 <i>h</i> /mm	25	
	刀宽B/mm	5	


表4 试验切削参数

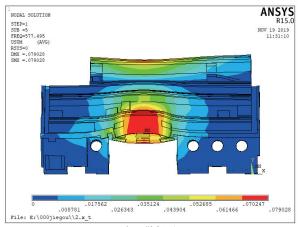
切削用量	自定心卡盘夹紧	
主轴转速n/(r/min)	530	
切削速度v / (m/min)	99	
进给量f/ (mm/r)	0.1	
切削深度t/mm	7.0	

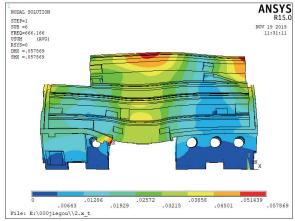
表2 斜床身前6阶振型计算结果


固有频率/Hz 振型 最大位移量/mm 模态阶数 303.38 X向振动 Y向摆动 0.052 8 1 320.43 整体前后振动 0.054 2 2 414.28 绕Y轴转动 0.072 0 3 530.85 整体上下振动 0.062 5 4 577.50 绕X轴转动 0.057 9 5 666.17 整体振动 0.079 0 6				
303.38 Y向摆动 0.052 8 1 320.43 整体前后振动 0.054 2 2 414.28 绕Y轴转动 0.072 0 3 530.85 整体上下振动 0.062 5 4 577.50 绕X轴转动 0.057 9 5	固有频率/Hz	振型	最大位移量/mm	模态阶数
414.28 绕Y轴转动 0.072 0 3 530.85 整体上下振动 0.062 5 4 577.50 绕X轴转动 0.057 9 5	303.38		0.052 8	1
530.85 整体上下振动 0.062 5 4 577.50 绕X轴转动 0.057 9 5	320.43	整体前后振动	0.054 2	2
577.50 绕X轴转动 0.057 9 5	414.28	绕Y轴转动	0.072 0	3
75 77	530.85	整体上下振动	0.062 5	4
666.17 整体振动 0.079 0 6	577.50	绕X轴转动	0.057 9	5
	666.17	整体振动	0.079 0	6



a) 一阶振型


b) 二阶振型



ANSYS R15.0 NODAL SOLUTION NODAL SOLUTION STEP=1 SUB =4 FREQ=530.855 USUM (AVG) RSYS=0 DMX =.062489 SMX =.062489 NOV 19 2019 11:31:08 .013886 .027773 .041659 .055546 .062489 .034716 .048603 .062489 File: E:\000jiegou\\2.x_t

d) 四阶振型

e) 五阶振型

f) 六阶振型

图6 切削颤振试验

图5 斜床身前6阶振型

参考文献:

- [1] 唐恒龄,杨啸.机床动力学 [M]. 北京: 机械工业出版社, 2000.
- [2] 倪晓宇, 易红, 汤文成, 等. 机床床身结构的有限元分析与 优化[J]. 制造技术与机床, 2005
- (2): 47-50.
- [3] 纪海峰. 基于ABAQUS的数控车 床床身有限元分析及结构优化 设计[J]. 机械设计与制造工程, 2016 (04) : 23-26.

MW(收稿日期: 20200117)